1-Diisopropylphosphino-2-phenyl-1,2dicarba-*closo*-dodecaborane(12)

Reijo Sillanpää,^a* Raikko Kivekäs,^b† Francesc Teixidor,^c Clara Viñas^c and Rosario Nuñez^c

^aDepartment of Chemistry, University of Turku, FIN-20500 Turku, Finland, ^bInorganic Chemistry Laboratory, PO Box 55, FIN-00014 University of Helsinki, Finland, and ^cInstitut de Ciència dels Materials (CSIC), Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain

(Received 2 January 1996; accepted 28 March 1996)

Abstract

In the title compound, $C_{14}H_{29}B_{10}P$, the diisopropylphosphine and phenyl groups are bonded to the C atoms of the 1,2-dicarbadodecaborane cage. Bond lengths are $P-C_{cage}$ 1.879 (3), $P-C_{Pr}$ 1.866 (4) and 1.881 (4), and $C_{cage}-C_{cage}$ 1.769 (4) Å. The elongation of the $C_{cage}-C_{cage}$ bond is discussed.

Comment

 C_{cage} — C_{cage} distances [C(1)—C(2) or C_c — C_c] in 1,2dicarba-closo-dodecaboranes vary considerably depending on the cluster carbon substituents. Some general trends affecting the length of the cluster C_c--C_c distance have been observed: (i) the distance increases with increasing number of substituents on the cluster C atoms; (ii) in compounds substituted with sulfur, the distance is longer than in unsubstituted compounds or in compounds substituted with carbon or silicon; (iii) the distance seems to be longer in aryl than in non-aryl substituted compounds (Kivekäs, Sillanpää, Teixidor, Viñas & Nuñez, 1994; Lewis & Welch, 1993). Thus, in compounds containing two S substituents, long C(1)-C(2) distances of 1.858 (5), 1.826 (5) (Teixidor, Viñas, Rius, Miravitlles & Casabó, 1990) and 1.816(6) Å (Teixidor, Romerosa, Rius, Miravitlles, Casabó, Viñas & Sanchez, 1990) are reported, whereas in the 1,2unsubstituted compound 9,12-isopropylidenedithio-1,2dicarba-closo-dodecaborane(12), the distance is only 1.634 (3) Å (Šubrtová, Línek & Hašek, 1980).

In a recent series of papers, we have explained the elongation of the C_c — C_c bond and suggested an empirically derived equation to calculate this distance (Kivekäs, Sillanpää, Teixidor, Viñas & Nuñez, 1994; Kivekäs, Sillanpää, Teixidor, Viñas, Nuñez & Abad, 1995). We have also reported the crystal structures of several 1,2-dicarba-*closo*-dodecaborane compounds containing different substituents connected to the cluster C atoms, namely, 1-diisopropylphosphino-2-methyl-1,2-dicarba-*closo*-dodecaborane(12), (2), 1,2-bis(diisopropylphosphino)-1,2-dicarba-*closo*-dodecaborane(12), (3) (Kivekäs, Sillanpää, Teixidor, Viñas, Nuñez & Abad, 1995), 1-diphenylphosphino-1,2-dicarba-*closo*-dodecaborane(12), (4) (Kivekäs, Teixidor, Viñas & Nuñez, 1995), and 1-diphenylphosphino-2-methyl-1,2-dicarba*closo*-dodecaborane(12), (5) (Kivekäs, Sillanpää, Teixidor, Viñas & Nuñez, 1994). To obtain further insight into the effect of the substituents on the lengthening of the C_c — C_c bond, we now report the preparation and crystal structure determination of the title compound, 1diisopropylphosphino-2-phenyl-1,2-dicarba-*closo*-dodecaborane(12), (1).

In compound (1), the diisopropylphosphine and phenyl groups are connected to the cluster C atoms. These substituents are oriented so that they avoid mutual close contacts, as can be seen in Fig. 1 and from the torsion angle values in Table 2. The P atom is bonded in a pyramidal arrangement to two C atoms of two isopropyl groups and to the C(1) atom of the carborane moiety. The P—C bond lengths in (1) are equal within experimental error and the P—C_c distance is in reasonable agreement with those of compounds (2)–(5). In (1), the P—C(1)—X angles vary considerably and indicate a trend similar to that observed for compounds (2)–(5),

Fig. 1. ORTEPII (Johnson, 1976) plot of compound (1). Displacement ellipsoids are drawn at the 30% probability level.

[†] Present address: Departament de Química, Universitat Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.

i.e. the P—C(1)—C(2) angle is relatively closed and the P-C(1)-B(4) and P-C(1)-B(5) angles are relatively open. The X—C(2)—C(13) angles, on the other hand, vary only slightly, as is also the case in compound (2). The P \cdots C(13) distance is 3.310(4)Å, which is only ca 0.2 Å shorter than the sum of the corresponding van der Waals radii (Bondi, 1964; Allinger, Hirsch, Miller, Tyminski & van Catledge, 1968). The $P \cdots C(13)$ distance, the angles around the cluster C atoms and the low P-C(1)-C(2)-C(13) torsion angle value indicate the absence of a noteworthy repulsion between the C(13)and P atoms. The geometric parameters of the P-C(1)—C(2)—C(13) moiety in (1) are very similar to those of compound (2).

Because the C_c-C_c distances in aryl-substituted compounds are longer than those in non-aryl substituted compounds, we could predict that in (1), with P and Carvl substituents, the distance should be longer than in (2) with P and C_{alkyl} substituents. The crystal structure of (1) confirms this. Thus, in compounds (1)-(5), the elongation of the C_c — C_c distances agrees with the general trends mentioned above, with the distance being shortest in monosubstituted compound (4) [1.666(9) A]; the distances in compounds (2), (3) and (5) are longer than that in (4), with compound (1) having the longest bond. The C_c — C_c distances in (2), (3) and (5) do not differ significantly, although the substituents on one of the C_c atoms are very different, *i.e.* CH₃ in (2) and (5), and $P[CH(CH_3)_2]_2$ in (3). The distances are similar to the average distance of 1.727 (6) Å found in 1,2-diphenyl-1,2-dicarba-closo-dodecaborane(12), (6) (Lewis & Welch, 1993). It was suggested that some degree of intramolecular crowding exists in (6), but no opening of the C_c-C_c-C_{arvl} angles was observed. As the e.s.d.'s of the C_c — C_c bonds in the comparison compounds are not all low, it has not been possible to account for the differences due to the following pairs of substituents: two P, P and one non-aryl, and two aryl. The C_c — C_c distance in compound (1) may be accounted for by the additive formula

$$d = d_o + \Sigma(a_i + S_i)$$

where $d_o = 1.634(3)$ Å and a_i and S_i are the electronic and steric contributions, respectively (Kivekäs, Sillanpää, Teixidor, Viñas & Nuñez, 1995). Applying this equation to compound (6) gives $a_i + S_i = 0.04 \text{ \AA}$ per C₆H₅ group. Earlier data have indicated $a_i = 0$ and $S_i = 0.04$ for the P[CH(CH₃)₂]₂ group, resulting in a calculated value of d = 1.71 Å, which is 0.06 Å shorter than that found experimentally. Further work is needed to understand the conversion between the closo, nido and arachno structures experienced in these clusters.

Experimental

The synthesis of (1) was carried out as for compounds (2)-C(1) (5) (Kivekäs, Sillanpää, Teixidor, Viñas, Nuñez & Abad, C(2)1995; Kivekäs, Teixidor, Viñas & Nuñez, 1995; Kivekäs, B(3)

Sillanpää, Teixidor, Viñas & Nuñez, 1994) starting from 1-Ph-1,2-C₂B₁₀H₁₁ and ClP[CH(CH₃)₂]₂ (yield 85%). Analysis:

calculated for C14H29B10P: C 49.98, H 8.69%; found: C 49.98, H 8.58%. FT-IR (KBr): v (cm⁻¹) 2952, 2924, 2868 (C— H), 2614, 2579 (B-H). ¹H FT-NMR [250 MHz, (CD₃)₂CO, 298 K, TMS]: & 1.11 (m, 12H, CH₃), 2.10 (m, 2H, CH), 7.66–7.43 (m, 5H, C₆H₅). ¹¹B FT-NMR [128 MHz, (CD₃)₂CO, 298 K, BF₃.Et₂O]: δ -0.03 [d, ¹J(B,H) = 143.1 Hz, 1B], $-3.56 \ [d, {}^{1}J(B,H) = 147.1 \ Hz, \ 1B], \ -9.06 \ [d, {}^{1}J(B,H) =$ 139.4 Hz, 4B], $-10.05 [d, {}^{1}J(B,H) = 157.2 Hz, 2B], -11.62 [d, {}^{1}J(B,H) = 187.6 Hz, 2B]. {}^{31}P{}^{1}H{}$ FT-NMR [101 MHz, $(CD_3)_2CO, 298 \text{ K}, H_3PO_4$]: δ 38.50 [s, P(ⁱPr)₂]. ¹³C{1H} NMR [75 MHz, (CD₃)₂CO, 298 K, TMS]: δ 18.65 [d, ²J(C,P) = 7.6 Hz], 22.15 [d, ${}^{2}J(C,P)$ = 22.6 Hz], 26.35 [d, ${}^{1}J(C,P)$ = 26.35 Hz], 86.99 [d, J(C,P) = 86.05 Hz], 88.25 [d, J(C,P) =18.87 Hz], 128.50 (s), 130.72 (s), 131.00 (s), 131.81 (s).

Crystal data

 $C_{14}H_{29}B_{10}P$ $M_r = 336.46$ Monoclinic $P2_1/n$ a = 9.673(1) Å b = 20.021(2) Å c = 10.571(2) Å $\beta = 90.89 (1)^{\circ}$ $V = 2047.0(5) \text{ Å}^3$ Z = 4 $D_x = 1.092 \text{ Mg m}^{-3}$ D_m not measured

Data collection

Rigaku AFC-5S diffractometer $\omega/2\theta$ scans Absorption correction: ψ scans (North, Phillips & Mathews, 1968) $T_{\min} = 0.935, T_{\max} =$ 1.000 3966 measured reflections

3737 independent reflections

Refinement

Refinement on F R = 0.057wR = 0.058S = 1.6262141 reflections 256 parameters H atoms: see below $w = 1/\sigma^2(F)$

Mo $K\alpha$ radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 10.1 - 15.9^{\circ}$ $\mu = 0.124 \text{ mm}^{-1}$ T = 295 KPlate $0.35 \times 0.30 \times 0.15$ mm

Colourless

2141 observed reflections $[F > 4\sigma(F)]$ $R_{\rm int} = 0.031$ $\theta_{\max} = 25^{\circ}$ $h = -11 \rightarrow 11$ $k = 0 \rightarrow 23$ $l = 0 \rightarrow 12$ 3 standard reflections monitored every 150 reflections intensity decay: 0.5%

 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.2 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min}$ = -0.3 e Å⁻³ Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\tilde{A}^2)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

x		у	z	U_{eq}
0.1080) (1)	0.07041 (5)	0.20574 (9)	0.0503 (3)
0.207	5 (3)	0.1416 (2)	0.2787 (3)	0.042 (1)
0.3290	5 (3)	0.1775 (2)	0.1759 (3)	0.041 (1)
0.3833	3 (4)	0.1295 (2)	0.3017 (4)	0.047 (1)

B(4)	0.2716 (5)	0.1468 (2)	0.4300 (4)	0.053 (2)
B(5)	0.1455 (5)	0.2039 (2)	0.3737 (4)	0.056 (2)
B(6)	0.1798 (4)	0.2197 (2)	0.2125 (4)	0.048 (2)
B(7)	0.4699 (5)	0.2043 (2)	0.2613 (4)	0.051 (2)
B(8)	0.4347 (5)	0.1857 (2)	0.4214 (4)	0.059 (2)
B(9)	0.2873 (5)	0.2328 (2)	0.4648 (5)	0.063 (2)
B(10)	0.2298 (5)	0.2779 (2)	0.3309 (5)	0.060 (2)
B(11)	0.3424 (5)	0.2609 (2)	0.2058 (4)	0.053 (2)
B(12)	0.4092 (5)	0.2680 (2)	0.3620 (4)	0.061 (2)
C(13)	0.3453 (3)	0.1515 (2)	0.0437 (3)	0.046 (1)
C(14)	0.2772 (4)	0.1812 (2)	-0.0567 (4)	0.069 (2)
C(15)	0.2961 (5)	0.1589 (3)	-0.1780 (4)	0.087 (2)
C(16)	0.3820 (6)	0.1069 (3)	-0.2026 (4)	0.085 (2)
C(17)	0.4512 (5)	0.0774 (2)	-0.1044 (4)	0.080 (2)
C(18)	0.4339 (4)	0.0996 (2)	0.0187 (4)	0.062 (2)
C(19)	0.1088 (4)	0.0046 (2)	0.3308 (3)	0.058 (1)
C(20)	0.2495 (5)	-0.0277 (2)	0.3505 (4)	0.085 (2)
C(21)	0.0054 (5)	-0.0494 (2)	0.2870 (4)	0.087 (2)
C(22)	-0.0737 (4)	0.1039 (2)	0.2065 (4)	0.065 (2)
C(23)	-0.1547 (5)	0.0741 (3)	0.0929 (4)	0.103 (2)
C(24)	-0.1560 (4)	0.0988 (2)	0.3277 (4)	0.090 (2)

Table 2. Selected geometric parameters (Å, °)

	0		,	
P—C(1)	1.879 (3)	C(1)—B(6)	1.731 (5)	
P-C(19)	1.866 (4)	C(2)—C(13)	1.501 (5)	
P—C(22)	1.881 (4)	C(19)—C(20)	1.519 (6)	
C(1)—C(2)	1.769 (4)	C(19)—C(21)	1.540 (6)	
C(1)—B(3)	1.730 (5)	C(22)C(23)	1.544 (6)	
C(1)—B(4)	1.710 (5)	C(22)—C(24)	1.522 (6)	
C(1)—P—C(19)	104.4 (2)	B(6)—C(2)—C(13)	118.4 (3)	
C(1)—P—C(22)	101.5 (2)	B(7)—C(2)—C(13)	120.7 (3)	
C(19)-P-C(22)	104.0 (2)	B(11) - C(2) - C(13)	120.4 (3)	
P-C(1)-C(2)	113.5 (2)	C(2)—C(13)—C(14)	120.9 (3)	
P—C(1)—B(3)	116.6 (2)	C(2)—C(13)—C(18)	120.9 (3)	
P - C(1) - B(4)	127.3 (2)	P-C(19)-C(20)	113.1 (3)	
P-C(1)-B(5)	127.6 (2)	P-C(19)-C(21)	106.7 (3)	
P-C(1)-B(6)	116.3 (2)	P-C(22)-C(23)	108.8 (3)	
C(1)-C(2)-C(13)	120.5 (3)	P-C(22)-C(24)	118.7 (3)	
B(3)-C(2)-C(13)	119.5 (3)			
C(19)PC	C(1)—C(2)	134.9 (2)		
C(22)—P—(C(1)—C(2)	-117.2 (2)		
P-C(1)-C	(2)—C(13)	0.7 (4)		
C(1)-C(2)-	-C(13)-C(14)	95.6	(4)	
C(1)—C(2)-	-C(13)-C(18)	88.0	(4)	

The non-H atoms were refined with anisotropic displacement parameters and H(B) atoms with fixed isotropic displacement parameters. H(C) atoms were placed at fixed positions (C—H = 0.95 Å) and not refined.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989a). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1989b). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: CRYLSQ in Xtal3.0 (Hall & Stewart, 1990). Molecular graphics: ORTEPII (Johnson, 1976) in Xtal3.0. Software used to prepare material for publication: ATABLE and BONDLA in Xtal3.0.

RK is grateful for funding received from the Spanish Ministry of Education and Science (SAB95-0249) and Oskar Öflunds Stiftelse. This research was funded in part by grant QFN92-4313.

References

- Allinger, N. L., Hirsch, J. A., Miller, M. A., Tyminski, I. J. & van Catledge, F. A. (1968). J. Am. Chem. Soc. 90, 1199–1210.
- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Hall, S. R. & Stewart, J. M. (1990). Editors. Xtal3.0 Reference Manual. Universities of Western Australia, Australia, and Maryland, USA.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kivekäs, R., Sillanpää, R., Teixidor, F., Viñas, C. & Nuñez, R. (1994). Acta Cryst. C50, 2027–2030.
- Kivekäs, R., Sillanpää, R., Teixidor, F., Viñas, C., Nuñez, R. & Abad, M. (1995). Acta Cryst. C51, 1864–1868.
- Kivekäs, R., Teixidor, F., Viñas, C. & Nuñez, R. (1995). Acta Cryst. C51, 1868–1870.
- Lewis, Z. G. & Welch, A. J. (1993). Acta Cryst. C49, 705-710.
- Molecular Structure Corporation (1989a). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1989b). TEXSAN. Single Crystal Structure Analysis Software. Version 5.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Šubrtová, C., Línek, A. & Hašek, J. (1980). Acta Cryst. B36, 858-861.
- Teixidor, F., Romerosa, A., Rius, J., Miravitlles, C., Casabó, J., Viñas,
- C. & Sanchez, E. (1990). J. Chem. Soc. Dalton Trans. pp. 525-529. Teixidor, F., Viñas, C., Rius, J., Miravitlles, C. & Casabó, J. (1990). Inorg. Chem. 29, 149-152.

Acta Cryst. (1996). C52, 2225-2229

cis-2-*sec*-Butyl-4-{4-[4-(4-{[2-(2,4-dichlorophenyl)-2-(1*H*-1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy}phenyl)-1piperazinyl]phenyl}-2,4-dihydro-3*H*-1,2,4triazol-3-one (Itraconazole†)

OSWALD M. PEETERS, NORBERT M. BLATON AND CAMIEL J. DE RANTER

Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium. E-mail: maurice.peeters@farm. kuleuven.ac.be

(Received 14 February 1996; accepted 25 March 1996)

Abstract

The molecular structure of itraconazole, $C_{35}H_{38}Cl_2$ -N₈O₄, has been determined from single-crystal X-ray diffraction data. The two molecules in the asymmetric unit differ mainly in the conformation of the methoxy-

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry, including torsion angles and contact distances, have been deposited with the IUCr (Reference: AB1350). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[†] Internal code of the Janssen Research Foundation: R51211.